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A mesh-free method is presented to analyze the static de#ection and the natural
frequencies of thin plates of complicated shape. The present method uses moving
least-squares (MLS) interpolation to construct shape functions based on a set of nodes
arbitrarily distributed in the analysis domain. Discrete system equations are derived from
the variational form of system equation. For static analysis, a penalty method is presented to
enforce the essential boundary conditions. For frequency analysis of free vibration, the
essential boundary conditions are represented through a weak form and imposed using
orthogonal transformation techniques. The present EFG method together with techniques
for imposing boundary conditions is coded in Fortran. Numerical examples are presented
for rectangular, elliptical, polygonal and complicated plates to demonstrate the convergence
and e$ciency of the present method.
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1. INTRODUCTION

With the wide application of plate structures of complex geometry, static and dynamic
analyses of plates of complicated shape become very important. However, exact analyses of
such a plate are usually very di$cult. Therefore, numerical techniques with di!erent
discretization schemes such as "nite element method (FEM) have been developed.
FEM has achieved remarkable success in the static and dynamic analyses of plates.
However, in the FEM as mesh is required to establish element connectivity to form "nite
element equations.

In recent years, a new type of numerical method called mesh-free method (MFM) is being
developed in the area of computational mechanics. Di!erent versions of MFMs [1}3] have
been so far successfully formulated for stress and displacement analysis in solids (e.g.,
references [4}8]), #uid #ow analysis (e.g., references [9, 10]), and heat transfer simulation
[11]. All the MFM formulations use a set of nodes scattered in the problem domain, and do
not require any element connectivity among the nodes. Element free Galerkin (EFG)
method is a well-developed method which uses moving least square (MLS) approach for
displacement interpolation. The EFG method has been applied to elasticity [12], crack
growth [13], and many other problems. Krysl and Belytschko have extended the EFG
method to static analysis of thin plates and shells [14, 15]. In their work, the essential
boundary conditions are enforced by a method of Lagrange multipliers. An EFG method
has also been formulated for modal analyses of Euler}Bernoulli beams and Kirchho! plates
[16]. In this work, the essential boundary conditions are enforced directly at each
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840 G. R. LIU AND X. L. CHEN
constraint boundary point, and analysis of thin plates with straight lines have been
performed.

In EFG methods, MLS interpolation functions are not equal to unity at nodes, which
implies that the shape functions do not have the delta function property. This complicates
the imposition of essential boundary conditions. Some techniques have been proposed to
impose essential boundary conditions such as Lagrange multipliers [1], penalty method
[17], coupling with FEM [18], and coupling with boundary element method (BEM)
[19, 20].

Use of Lagrange multipliers in the EFG methods leads to an increase of unknowns in the
discrete algebraic system equation and zero diagonal terms in the sti!ness matrix.
Therefore, solving the discrete system equations becomes more complex and less e$cient. In
the present paper, for static de#ection of thin plates, an EFG method is presented utilizing
penalty approach to enforce essential boundary conditions. The discrete system equation so
derived has a simple form as that contained in the conventional FEM. For the analysis of
free vibration of thin plates, the essential boundary conditions are formulated through
a weak form, which is separated from the weak form for the system equation. The boundary
conditions are then imposed using orthogonal transform techniques. The eigenvalue
equation derived using the present approach possesses a much smaller dimension than the
one in FEM. A number of numerical examples have been presented. Static de#ections of
thin rectangular plates with fully clamped and simply supported boundaries are computed
using the present approach. Natural frequencies of thin square, elliptical, hexagonal and
complicated plates with di!erent boundaries such as free, simply supported and fully
clamped are also calculated. Both regularly and irregularly distributed nodes are used in the
computation. Very good convergence and agreements are achieved compared to analytical
solutions. The e!ectiveness of the present EFG method has been demonstrated through the
examples for both static and free vibration analyses of complicated plates.

2. APPROXIMATION OF DISPLACEMENT

2.1. SHAPE FUNCTION

Consider a Kirchho! plate of a]b]h shown in Figure 1. A Cartesian co-ordinate
system is used to establish equations. The de#ections of the plate in the x, y, z directions are
denoted as u, v, w respectively.

Based on Kirchho!'s assumption of thin plate, the de#ection w (X) at X"Mx, yNT can be
taken as an independent variable, and the other two displacements u(X) and v(X) can be
Figure 1. A thin rectangular plate and its co-ordinate system.



MESH-FREE METHOD FOR THIN PLATES 841
obtained through w (X). In this paper, the moving least-squares (MLS) approximation is
employed to approximate w(X) with a displacement approximation function wh (X) given in
the form of

wh (X)"PT(X)a (X), (1)

where P (X) is a complete polynomial of order m. The polynomials adopted in the present
paper are

PT (X)"M1, x, y, x2, xy, y2N, m"6. (2)

The coe$cients a (X) in equation (1) are also functions of X, which can be obtained by
minimizing a weighted discrete ¸

2
norm:

J"
n
+
I/1

w (X!X
I
)[PT(X

I
)a(X)!w

I
]2, (3)

where n is the number of points in the neighborhood of X. The neighborhood is called the
domain of in#uence of X. w (X!X

I
) is a weight function of compact support.

LJ/La"0 yields the following linear algebraic equations:

A(X)a (X)"B (X)w, (4)

where w"Mw
1
,2, w

n
NT, the symmetrical matrix A(X) and the non-symmetrical matrix

B(X) are de"ned by the following forms:
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)PT(X

I
), (5)
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)N. (6)

Substituting equation (4) into equation (1), yields

wh(X)"
n
+
I/1

PT(X)A~1 (X)B(X)w
I
"

n
+
I/1

U
I
(X)w

I
. (7)

Let c (X)"A~1(X)P (X), we have

U
I
(X)"cT (X)B(X), Ac"P. (8, 9)

The partial derivatives of c can be obtained as follows:
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The partial derivatives of shape function U
I
can be obtained as follows:
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2.2. WEIGHT FUNCTION

The domains of in#uence of EFG nodes can be controlled by choosing a weight function.
The choice of weight function is therefore very important. In addition, numerical
integration to be produced by a weak form of equilibrium equation is performed at each
Gauss point over background integration mesh. So the choice of both the size of
background mesh and the number of Gauss points, is also important [21]. In this paper, the
weight function for Kirchho! plate is chosen as the quartic spline due to the requirement of
the continuity of the weight function and its "rst and second order derivatives. The spline
can be written as a function of a normalized distance:

w (r)"G
(1!6r2#8r3!3r4) for 0)r)1,

0 for r'1.
(20)

The choice of the shape of this in#uence domain is arbitrary. In most cases, square
domains and circular domains are used. In this paper, square domains are used.

The weight function of square domains is written as

w (r)"w (r
x
)w (r

y
)"w

x
w
y
, (21)
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where d
mx
"d

max
c
xI

, d
my
"d

max
c
yI

, while d
max

is a scaling parameter. c
xI

and c
yI

are
determined to ensure that enough neighbor EFG nodes are included to produce
a non-singular matrix A.

3. GOVERNING EQUATIONS

The boundary conditions of a plate can be denoted as follows:

p ) n"t1 on Sp , u8 "u6 on S
u
, (24, 25)
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where u8 "Rw.

For clamped boundary, R"

i
j
k

1
L
Ln

e
f
h
.

For simply supported boundary, R"

i
j
k

1
L2

Ln2

e
f
h
,

where p is the stress tensor, n is the unit normal on the boundary of the domain<, and t1 and
u6 denote prescribed boundary forces and displacements respectively.

Because the Kronecker delta condition U
I
(x

J
)"d

IJ
at each node is not satis"ed by the

MLS shape function, the essential boundary conditions (25) need to be imposed in a proper
manner.

For static de#ection analysis of thin plates, we use penalty method to enforce essential
boundary conditions by adding an additional boundary condition term in the variational
form of the static elastic equilibrium equation. The modi"ed variational form can be written
as

P
S

deT
p
:p

p
dS!P

V

duT ) b d<!P
Sp

duT ) t1 dS!d P
Su

(u8 !u6 )T ) a ) (u8 !u6 ) dS"0, (26)

where p
p

is the pseudo-stress, e
p

is the pseudo-strain, b is a body force vector, and a is
a diagonal matrix of penalty coe$cients which are usually very large numbers.

For free vibration analysis of thin plates, in order to produce a positive-de"nite sti!ness
matrix with smallest dimension for the eigenvalue equation in computing natural
frequencies, the discrete system equation and the boundary condition equation are
formulated separately. The variational form of the elastic dynamical undamped equilibrium
equation can still be taken as usual form as follows:

P
S

deT
p
: p

p
dS#P

V

duT )ouK d<!P
V

duT ) bd<!P
Sp

duT ) t1 dS"0, (27)

where b is a body force vector and o is the mass density.
The weak form of the essential boundary conditions with Lagrange multipliers is

employed to produce the discretized essential boundary conditions as given below

P
Su

djT(u8 !u6 ) dS"0. (28)

The Lagrange multipliers j can be written as follows:

j (X)"N
I
(s)j

I
, X3S

u
, (29)

dj(X)"N
I
(s)dj

I
, X3S

u
, (30)

where s and N
I
(s) are the arclength and Lagrange interpolation along the boundary

respectively.
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The displacement "elds of a Kirchho! plate [22] are
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The pseudo-strains of the plate are denoted as
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The pseudo-stresses or moments (per unit length) of the plate are denoted as

p
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. (33)

The relationship between the strain and the stress is expressed as

p
p
"DCe

p
, (34)

where D"Eh3/12(1!l2), and with E and l being Young's modulus, and the Poisson ratio
respectively, and

C"

1 l 0

l 1 0

0 0 1
2
(1!l)

,

The static variational form (26) can be rewritten as

P
S

dwLTDCLwdS!P
V

dwL3 Tb d<!P
Sp

dwL3 Tt1 dS!dP
Su

(Rw!u6 )Ta (Rw!u6 ) dS"0.

(35)

The dynamical variational form (27) can be rewritten as

P
S

dwLTDCLwdS#P
V

odwL3 TL3 wK d<!P
V

dwL3 Tb d<!P
Sp

dwL3 Tt1 dS"0. (36)

The weak form (28) can be rewritten as

P
Su

djT(Rw!u6 ) dS"0. (37)
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4. DISCRETE EQUATIONS

Substituting the displacement "eld w of form (7) into the variational form (35), the "nal
static discrete equation can be obtained as follows:

(K#K3 )w"f. (38)

Similarly, substituting the displacement "eld w of form (7) into the variational form (36),
the "nal dynamical discrete equation can be obtained as follows:

MwK#Kw"f (39)

and
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For clamped boundary,

W
I
"G

U
I

U
I,n
H .

For simply supported boundary,

W
I
"G

U
I

U
I,nn
H ,

where n is the unit normal to the essential boundary surfaces S
u
.

5. EIGENVALUE PROBLEM

5.1. ESSENTIAL BOUNDARY CONDITION

Substituting the displacement "eld w of form (7) into the weak form (37), yields a set of
linear algebraic constraint equations:

Hw"q and H
KI
"P

Su

N
K
W

I
dS (46, 47)



846 G. R. LIU AND X. L. CHEN
q
K
"P

Su

N
K
u6 dS, N

K
"C

N
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0

0

N
K
D, (48, 49)

w"Mw
1
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NT, (50)

where n is the total number of nodes in the domain <. In general, H is a singular matrix.
For clamped boundary,

W
I
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U
I

U
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H.

For simply supported boundary,

W
I
"G

U
I

U
I,nn
H ,

where n is the unit normal to the essential boundary surface S
u
.

5.2. EIGENVALUE EQUATION

Eigenvalue equation of plate conducted from equation (39) is given by

(K!u2M)Q"0, (51)

where u is the circular frequency, and Q is a matrix of eigenvectors given by

Q"MQ
1
,2,Q

n
NT. (52)

For all the eigenvectors, the boundary constraint equation (46) can be restated as

HQ"q. (53)

For eigenvalue analysis, the essential boundary conditions are homogeneous, therefore,
we have q"0. Using singular-value decomposition [23], H can be decomposed as

H"URVT, (54)

where U and V are orthogonal matrices, R has a diagonal form whose diagonal elements are
equal to singular values of H.

The matrix V can be written as

VT"MVn]r, Vn](n!r)NT, (55)

where r is the rank of H, namely the number of independent constraints.
Performing co-ordinate transformation

Q"Vn](n!r)Q3 (56)

and substituting equation (56) into equation (51), leads to

(K3 !u2M3 )Q3 "0, (57)
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where K3 "VT
(n~r)]n

KVn](n!r) and M3 "VT(n!r)]nMVn](n!r) are the dimension reduced
sti!ness and mass matrices, which are non-negative de"nite. Solving equation (57) gives
natural frequencies of the vibration of plates.

6. NUMERICAL EXAMPLES

6.1. STATIC DEFLECTION OF BENDING THIN PLATES

For static de#ection analysis of bending thin plates shown in Figure 1, the following
parameters are used: length in x direction a"0)6 m for rectangular plate; length
a"b"0)6 m for square plate; thickness h"0)001 m; Young's modulus
E"1)0]109 N/m2; and the Poisson ratio l"0)3.

For static problem, a concentrated force at the center of the plates P"100)0 N.
Dimensionless de#ection coe$cient b of center of thin rectangular plate is de"ned as

b"w
max

D/Pa2, where w
max

is the de#ection at the center of the plates and D"Eh3/
[12(1!l2)] is the #exural rigidity of the plates.

In order to analyze the convergence of the present method, we calculated de#ections of
a square plate using di!erent density of nodes. Two kinds of boundary conditions are
imposed: simply supported and fully clamped. The results are shown in Table 1 together
with analytical results. Good convergence has been achieved.

Further examinations are performed for di!erent aspect ratios. The de#ections are
calculated using 16]16 nodes in the present method. The results are shown in Tables 2 and 3.
Compared with Timoshenko's results, good agreements have been achieved for all the cases.
TABLE 3

De-ection of fully clamped rectangular plates

b/a 1)0 1)2 1)4 1)6 1)8 2)0

b (present method) 0)00552 0)00637 0)00680 0)00698 0)00703 0)00704
b [22] (Timoshenko) 0)00560 0)00647 0)00691 0)00712 0)00720 0)00722

TABLE 2

De-ection of simply supported rectangular plates

b/a 1)0 1)2 1)4 1)6 1)8 2)0

b (present method) 0)01157 0)01344 0)01476 0)01556 0)01603 0)01632
b [22] (Timoshenko) 0)01160 0)01353 0)01484 0)01570 0)01620 0)01651

TABLE 1

De-ection of a square plate

b (present method) b [22] (Timoshenko)

Nodes 6]6 9]9 12]12 15]15 18]18
S}S}S}S 0)01032 0)01141 0)01145 0)01155 0)01157 0)01160

C}C}C}C 0)00452 0)00538 0)00546 0)00552 0)00554 0)00560
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6.2. FREQUENCY ANALYSIS OF FREE VIBRATION OF THIN PLATES

Consider now a square plate with the following parameters: length a"b"10)0 m;
thickness h"0)05 m; Young's modulus E"200]109 N/m2; the Poisson ratio l"0)3; and
mass density o"8000 Kg/m3.

An elliptical plate was studied. The radii of the plate are a"5)0 m and b"2)5 m
respectively. Other parameters are the same as the square plate.

A hexagonal plate was studied. The length of each side is a"10)0 m. Other parameters
are the same as the square plate.

A plate of very complicated shape was also studied. The geometric parameters are shown
in Figure 8. The unit is meter. Other parameters are the same as the square plate.

Di!erent boundary conditions were considered to examine the present method in
imposing boundary conditions.

The frequency coe$cients in the tables are X
1
"(u2oha4/D)1@4, X

2
"(u2oha4

p
/D)1@4,

where a
p

is the radius of the inscribing circle for regular polygonal plates.

6.2.1. Free thin square plate

We calculated frequencies of free vibration of free thin square plate. The results using
regular nodes of di!erent density are shown in Table 4 together with FEM results. In the
FEM results, HOE denotes eight-noded semi-loof thin shell element (4]4 mesh); LOE
denotes four-noded iso-parametric shell element (8]8 mesh). The "rst three frequencies
corresponding to the rigid displacements are zero, and are not listed in the table. The results
obtained using the present method are between those of FEMs using HOE and LOE. The
present results show good convergence and good agreements with other methods.

6.2.2. Simply supported and fully clamped thin square plate

Natural frequencies of lateral free vibration of a simply supported and fully clamped thin
square plate are computed using the present method. In order to analyze the e!ectiveness of
the present method using irregular nodes, we calculated frequencies using 13]13 regular
nodes (Figure 2) and 169 irregular nodes (Figure 3). The results are shown in Tables 5 and 6.
It is found that the results of using both regular and irregular nodes show good agreements
with each other and with the analytical solutions.

6.2.3. ¹hin elliptical plate

In order to analyze the e!ectiveness of the present method in computing frequencies of
free vibration of thin plate of complicated shape, we calculated natural frequencies of a thin
TABLE 4

Natural frequency coe.cients X
1

of lateral free vibration of a free square plate

Mode Present method FEM [24]Analytical
solution [24]

5]5 9]9 13]13 17]17 HOE LOE

4 3)670 3)700 3)670 3)670 3)670 3)567 3)682
5 4)427 4)468 4)434 4)430 4)429 4)423 4)466
6 4)926 5)000 4)939 4)933 4)930 4)875 4)997
7 5)929 6)010 5)907 5)903 5)901 5)851 5)942
8 5)929 6)010 5)907 5)903 5)901 5)851 5)942
9 7)848 8)189 7)855 7)840 7)832 7)820 8)079



Figure 2. A square plate with 13]13 regular nodes.

Figure 3. A square plate with 169 irregular nodes.
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elliptical plate. Table 7 shows frequencies of a free thin elliptical plate using regular nodes.
The "rst three frequencies corresponding to rigid displacements are zero, and are not listed
in the table. Good convergence of the results has been achieved. Table 8 shows frequencies
of fully clamped thin elliptical plate. The frequencies are calculated using regular nodes
(Figure 4) and irregular nodes (Figure 5). Good agreement between the same using regular
and irregular nodes has been observed.

6.2.4. Fully clamped thin regular polygonal plates

The natural frequencies of a square plate with fully clamped boundaries were calculated.
A total of 524 irregular nodes shown in Figure 6 were used. The natural frequencies of
a hexagonal plate with fully clamped boundaries were also calculated, where 380 irregular



TABLE 5

Natural frequency coe.cients X
1

of lateral free vibration of a simply supported square plate

Mode Analytical solution [24] Present method

Regular nodes 13]13 Irregular nodes 169

1 4)443 4)443 4)453
2 7)025 7)031 7)033
3 7)025 7)036 7)120
4 8)886 8)892 8)912
5 9)935 9)959 9)966
6 9)935 9)966 10)010
7 11)327 11)341 11)345
8 11)327 11)347 11)540
9 * 13)032 12)994

10 * 13)036 13)064

TABLE 6

Natural frequency coe.cients X
1

of lateral free vibration of a fully clamped square plate

Mode Analytical solution [25] Present method

Regular nodes 13]13 Irregular nodes 169

1 5)999 6)017 5)999
2 8)568 8)606 8)596
3 8)568 8)606 8)602
4 10)407 10)439 10)421
5 11)472 11)533 11)507
6 11)498 11)562 11)528
7 * 12)893 12)925
8 * 12)896 12)986
9 * 14)605 14)570

10 * 14)606 14)604

TABLE 7

Natural frequency coe.cients X
1

of lateral free vibration of a free elliptical plate

Mode Present method

97 nodes 241 nodes 289 nodes

4 5)197 5)176 5)173
5 6)533 6)509 6)505
6 8)288 8)244 8)234
7 9)451 9)405 9)397
8 10)602 10)559 10)547
9 11)333 11)256 11)249

10 12)223 12)168 12)160

850 G. R. LIU AND X. L. CHEN



TABLE 8

Natural frequency coe.cients X
1

of lateral free vibration of a fully clamped elliptical plate

Mode Present method

Regular nodes 201 Irregular nodes 201

1 10)467 10)454
2 12)619 12)621
3 15)009 14)992
4 16.726 16.716
5 17)629 17)658
6 18)838 18)840
7 20)604 20)508
8 21)081 21)060
9 22)913 22)890

10 23)610 23)591

Figure 4. An elliptical plate with 201 regular nodes.

Figure 5. An elliptical plate with 201 irregular nodes.
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nodes shown in Figure 7 were used. Table 9 lists the frequency coe$cients of the lowest 10
modes for these two plates. Table 10 shows a comparison between the frequency coe$cients
using the EFG method and those given by reference [26]. For the square plate, the natural
frequency coe$cient of the "rst mode using the EFG method agrees very well with the exact
solution and the numerical result in reference [26]. For the hexagonal plate, the natural



Figure 6. A square plate with 524 irregular nodes.

Figure 7. A hexagonal plate with 380 irregular nodes.
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frequency coe$cient of the "rst mode using the EFG method is slightly smaller than the
numerical result in reference [26].

6.2.5. ¹hin plate of complicated shape

The natural frequencies are computed for a thin plate with a hole of very complicated
shape shown in Figure 8. The plate is chosen highly hypothetically, but it serves the purpose
of demonstrating the applicability of the present method to plates of complicated shapes.
The nodal distribution is plotted in Figure 9. Table 11 lists the frequencies obtained for the
plate with di!erent boundary conditions. In the table, S denotes simply supported while
C means clamped. As expected, the natural frequencies of the plate with clamped
boundaries are generally higher than those with simply supported boundaries.



TABLE 9

Natural frequency coe.cients X
2

of lateral free vibration of fully clamped regular polygonal
plate

Mode Present method

Square Hexagon

1 9)089 9)042
2 18)700 17)805
3 18)829 20)586
4 28)121 29)802
5 33)515 34)740
6 33)649 37)368
7 42)550 46)622
8 43)529 51)846
9 53)896 55)799

10 54)156 59)138

TABLE 10

Comparison of natural frequency coe.cients X
2

of ,rst mode of fully clamped regular
polygonal plates

Present method Exact [26] Ref. [26]

Square 9)089 8)997 9)122
Hexagon 9)042 * 9)638

Figure 8. A plate with a hole of complicated shape.
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Figure 9. Nodal distribution in a plate with a hole of complicated shape.

TABLE 11

Natural frequency coe.cients X
1

of lateral free vibration of a plate with a hole of complicated
shape

Mode Present method

S}S}S}S C}C}C}C S}C}S}C S}C}C}S

1 5)453 7)548 7)170 6)079
2 8)069 10)764 10)343 9)204
3 9)554 11)113 11)415 10)837
4 10)099 11)328 12)572 11)273
5 11)328 12)862 12)811 12)278
6 12)765 13)300 13)272 13)322
7 13)685 14)168 13)997 14)308
8 14)305 15)369 14)627 14)900
9 15)721 16)205 15)743 15)170

10 17)079 17)137 16)391 16)302

854 G. R. LIU AND X. L. CHEN
7. CONCLUSIONS

A mesh-free method has been developed for static and free vibration analyses of thin
plates of complicated shapes. The present method does not require a mesh for displacement
"eld interpolation. Numerical examples are presented for plates of di!erent shapes with
irregular node distribution. Very good convergence of the present method has been
observed. Very good agreements with analytical results as well as FEM have also been
achieved. It has been demonstrated that the present method is e$cient in performing static
and free vibration analyses of thin plates of complicated shapes.
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